So sánh 7 và 5√2


So SánhSo sánh

Home

»

Học Toán

»

Học Toán 9

»

Toán 9 Căn bậc hai So sánh các căn bậc hai số học

Toán 9 Căn bậc hai So sánh các căn bậc hai số học

by Dung Nguyễn Thùy | category Học Toán 9 | Không có phản hồi

căn bậc hai toán 9căn bậc hai toán 9

Ở lớp 7, ta đã học căn bậc hai của một số a không âm là một số x sao cho x² = a.

Tức là, ví dụ căn bậc hai của 64 là 64 và 64 hay là ±8.

Số 0 có đúng một căn bậc hai là chính số 0, ta viết 0 = 0.

Số dương a có đúng 2 căn bậc hai là hai số đối nhau:

  • Số dương kí hiệu là a >>> gọi là CĂN BẬC HAI SỐ HỌC
  • Số âm kí hiệu là a.

Số âm không có căn bậc hai.

Mục lục

  • 1.Định nghĩa Căn bậc hai số học
  • 2.So sánh các căn bậc hai số học
  • Các dạng bài tập Căn bậc hai
    • Dạng 1: Tính căn bậc hai số học và căn bậc hai
      • Bài 1 SGK Toán 9 tập 1
    • Dạng 2: So sánh các căn bậc hai số học
      • Bài 2 SGK Toán 9 tập 1
    • Dạng 3: Giải phương trình, bất phương trình chứa căn bậc hai
      • Bài 3 SGK Toán 9 tập 1
      • Bài 4. SGK Toán 9 tập 1
      • Bài 5. SGK Toán 9 tập 1
  • Tóm tắt bài học: Căn bậc hai Căn bậc hai số học
  • Bài tập nâng cao về Căn bậc hai
    • Bài 1: Chứng minh căn bậc hai của một số là số vô tỉ
    • Bài 2: So sánh các căn bậc hai số học
    • Bài 3: Giải phương trình có chứa căn bậc hai

1.Định nghĩa Căn bậc hai số học

Với số dương a, số a được gọi là căn bậc hai số học của a.

Số 0 cũng được gọi là căn bậc hai số học của 0.

Phép toán tìm căn bậc hai số học của số không âm gọi là phép khai phương.

Để khai phương một số, ta có thể dùng máy tính bỏ túi.

Ví dụ: Căn bậc hai số học của 16 là 16 = 4.

Căn bậc hai số học của 6 là 6.

Chú ý: Với a 0, ta có:

Nếu x = a thì x 0 và x² = a.

Nếu x 0 và x² = a thì x = a.

Ta có thể viết như sau:

Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:

a) 121 : căn bậc hai số học của 121 là 11 vì 11 0 và 11² = 121

=> căn bậc hai của 121 là ±11

b) 1,21: căn bậc hai số học của 1,21 là 1,1 vì 1,1 0 và 1,1² = 1,21.

=> căn bậc hai của 1,21 là ±1,1

căn bậc hai toán 9căn bậc hai toán 9

2.So sánh các căn bậc hai số học

Nhắc lại với các em là:

Nếu a < b thì a < b với a, b không âm.

Nếu a < b thì a < b với a, b không âm.

Ta sẽ áp dụng định lí sau để so sánh các căn bậc hai số học.

Định lí:

Với hai số a và b không âm, ta có: a < b a < b

Ví dụ: So sánh các căn bậc hai số học

a) 4 và 15

Đầu tiên ta viết 4 = 16 và so sánh 16 và 15.

Vì 16 > 15 nên 16 > 15. Vậy 4 > 15.

b) 11 và 3

Vì 11 > 9 nên 11 > 9. Vậy 11 > 3.

Tìm x không âm, biết:

a) x > 2

Vì 2 = 4, nên x > 4.

Vì x 0 nên x > 4 x > 4.

Vậy x > 4.

b) x < 3

Ta biết 3 = 9 nên x < 9.

Vì x 0 nên x < 9 x < 9.

Vậy 0 x < 9

c) (2x) < 4

Ta có 4 = 16 nên 2x < 16.

Vì x 0 nên 2x < 16 2x < 16 x < 8.

Vậy 0 x < 8.

Các dạng bài tập Căn bậc hai

Dạng 1: Tính căn bậc hai số học và căn bậc hai

Bài 1 SGK Toán 9 tập 1

Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:

a) 121 : căn bậc hai số học của 121 là 11 vì 11 0 và 11² = 121

=> căn bậc hai của 121 là ±11

b) 144 : căn bậc hai số học của 144 là 12 vì 12 0 và 12² = 144

=> căn bậc hai của 144 là ±12

c) 169 : căn bậc hai số học của 169 là 13 vì 13 0 và 13² = 169

=> căn bậc hai của 169 là ± 13

d) 225 : căn bậc hai số học của 225 là 15 vì 15 0 và 15² = 225

=> căn bậc hai của 225 là ± 15

e) 256 : căn bậc hai số học của 256 là 16

=> căn bậc hai của 256 là ± 16

f) 324 : căn bậc hai số học của 324 là 18

=> căn bậc hai của 256 là ± 18

g) 361 : căn bậc hai số học của 361 là 19

=> căn bậc hai của 361 là ± 19

h) 400 : căn bậc hai số học của 400 là 20

=> căn bậc hai của 400 là ± 20.

Dạng 2: So sánh các căn bậc hai số học

Bài 2 SGK Toán 9 tập 1

So sánh:

a) 2 và 3

Đầu tiên ta viết 2 = 4 và so sánh 4 với 3.

Vì 4 > 3 nên 4 > 3. Vậy 2 > 3.

b) 6 và 41

Ta có: 6 = 36. Vì 36 < 41 nên 36 < 41.

Vậy 6 < 41.

c) 7 và 47

Ta có 7 = 49. Vì 49 > 47 nên 49 > 47.

Vậy 7 > 47

Dạng 3: Giải phương trình, bất phương trình chứa căn bậc hai

Giải phương trình x² = a (với a 0).

Chú ý: Nếu a < 0 thì phương trình vô nghiệm.

Hướng dẫn:

Nghiệm của phương trình x² = a (với a 0) là các căn bậc hai của a, tức là

x² = a (với a 0) x = a hoặc a.

Bài 3 SGK Toán 9 tập 1

Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương trình sau (làm tròn đến chữ số thập phân thứ 3):

a) x² = 2

x = 2 hoặc 2

x = 1,414 hoặc 1,414

b) x² = 3

x = ±3 = ±1,732

c) x² = 3,5

x = ±3,5 = ±1,87

d) x² = 4,12

x = ±4,12 = ±2.03

Bài 4. SGK Toán 9 tập 1

Tìm số x không âm, biết:

a) x = 15

x = 15² = 225 <<< căn bậc hai số học của 225 bằng 15

b) 2x = 14

x = 7 <<< chia cả hai vế cho 2

x = 7² = 49 <<< căn bậc hai số học của 49 là 7

c) x < 2

0 x < 2 <<< kết hợp điều kiện x 0 và x < 2

d) 2x < 4

Ta có 4 = 16 nên 2x < 16.

Vì x 0 nên 2x < 16 2x < 16 x < 8.

Vậy 0 x < 8. <<< kết hợp điều kiện x 0 và x < 8.

Bài 5. SGK Toán 9 tập 1

Đố: Tính cạnh một hình vuông, biết diện tích của nó bằng diện tích của hình chữ nhật có chiều rộng 3,5 m và chiều dài 14 m.

Giải:

Trước tiên ta tính diện tích hình chữ nhật = chiều dài × chiều rộng = 14 × 3,5 = 49 m².

Gọi cạnh của hình vuông cần tìm là x, với x > 0.

Diện tích hình vuông = cạnh × cạnh = x² = diện tích hình chữ nhật nên

x² = 49. >>> Muốn tính x ta tìm căn bậc hai số học của 49.

x > 0 nên x là căn bậc hai số học của 49 tức là x = 49 = 7.

Vậy cạnh của hình vuông cần tìm là 7m.

Tóm tắt bài học: Căn bậc hai Căn bậc hai số học

Kết thúc bài hôm nay, chúng ta cần nhớ điều gì về căn bậc hai và căn bậc hai số học?

#1. Số dương a có đúng 2 căn bậc hai là hai số đối nhau:

  • Số dương kí hiệu là a >>> gọi là CĂN BẬC HAI SỐ HỌC
  • Số âm kí hiệu là a.

Số 0 có đúng 1 căn bậc hai là 0.

Số âm không có căn bậc hai.

#2. Căn bậc hai số học của một số không âm là một số không âm >>> a 0.
Với a 0:

Số x là căn bậc hai số học của a tức là

x = a x 0 và x² = (a)² = a.

Cuối cùng, ta phải nhớ định lí sau về căn bậc hai số học:

>>> Học Toán 9 online với giáo viên liên hệ 035 3150072.

Bài tập nâng cao về Căn bậc hai

Bài 1: Chứng minh căn bậc hai của một số là số vô tỉ

Để để chứng minh một số a là số vô tỉ, ta thường dùng phương pháp phản chứng: Giả sử a là số hữu tỉ thì dẫn đến mâu thuẫn.

Ta có thể chứng minh tổng quát rằng nếu số tự nhiên a không là số chính phương thì căn bậc hai của a là số vô tỉ.

Nhưng để dễ hiểu phương pháp làm, ta sẽ chứng minh 5 là số vô tỉ.

Giải:

Giả sử 5là số hữu tỉ thì nó viết được dưới dạng:

5 = m/n với m, n Z, n 0, ƯC (m, n) = 1. (m/n là phân số tối giản)

(5)² = m²/n² hay 5n² = m² (1)

m² chia hết cho 5 mà 5 là số nguyên tố nên m chia hết cho 5.

Đặt m = 5k (k Z) ta có : m² = 25k² (2)

Từ (1) và (2) ta có: 5n² = 25k²

n² = 5k²

suy ra n² chia hết cho 5 mà 5 là số nguyên tố nên n chia hết cho 5.

m và n cùng chia hết cho 5 nên m/n không phải là tối giản, như vậy trái giải thiết ƯC(m, n) = 1.

Vậy 5 không phải số hữu tỉ, do đó 5 là số vô tỉ. (đpcm)

Bài 2: So sánh các căn bậc hai số học

So sánh hai số:

a) 23 và 32

Ta có (23)² = 2². (3)² = 4. 3 = 12.

(32)² = 3². (2)² = 9.2 = 18.

Vì 12 < 18 nên (23)² < (32)² 23 < 32.

b) 24 + 45 và 12

Ta so sánh từng căn bậc hai của tổng đầu tiên:

Ta có 24 < 25 nên 24 < 25

45 < 49 nên 45 < 49

Vì vậy nên 24 + 45 < 25 + 49 = 5 + 7 = 12

c) 37 15 và 2

T a so sánh từng căn bậc hai của tổng đầu tiên:

Ta có 37 > 36 nên 37 > 36

15 < 16 nên 15 < 16 15 > 16

Nên 37 15 > 36 16 = 6 4 = 2.

Bài 3: Giải phương trình có chứa căn bậc hai

Điều kiện: x 1

Phương trình x 1 = 49 <<< Bình phương hai vế để mất căn bậc hai

x = 50 (thỏa mãn điều kiện) <<< Cộng cả hai vế với 1

x² + 1 = 4 <<< Bình phương hai vế để mất căn bậc hai

x² = 3 <<< Trừ hai vế cho 1

x = 3 hoặc 3

x² + 5x + 20 = 16 <<< Để bỏ căn bậc hai, ta bình phương hai vế

x² + 5x + 4 = 0 <<< Trừ cả hai vế cho 16

(x + 1)(x + 4) = 0 <<< Phân tích đa thức thành nhân tử

x = 1 hoặc x = 4

Vì 2 < 0 nên phương trình trên vô nghiệm.

Các bài tập trên là những bài tập mẫu liên quan đến căn bậc hai, căn bậc hai số học mà ta vừa học.

Các em hãy cố gắng đọc hiểu và tự mình làm lại rồi kiểm tra lại nhé!

Nếu muốn Học Toán tiếng Anh phần này thì học tại đây.

Bài tiếp theo: Bài 2. Căn thức bậc hai và hằng đẳng thức

Quay lại trang: Học toán 9

Xem thêm

  • Prime factorization: Definition, Methods, Applications
  • 2 cách giải hệ phương trình bậc nhất hai ẩn Toán 9
  • How to solve Linear Equations In Algebra
  • Quadratic factorisation 7 methods Step by step
  • How to solve quadratic equations 3 methods Step by step

Ths-GV Toán

Nguyễn Thùy Dung

Chia sẻ:

  • Twitter
  • Facebook

Like this:

Like Loading...

Tweet Pin It

Tags:căn bậc hai số học, tìm căn bậc hai, toán 9

  • góc nội tiếp Toán 9 Góc nội tiếp

    by Dung Nguyễn Thùy

  • Toán 9 Khái niệm hàm số

    by Dung Nguyễn Thùy

About Author

Dung Nguyễn Thùy

Chào các bạn, mình là Thùy Dung - người tạo ra LỚP HỌC TÍCH CỰC này. Là một giáo viên toán, theo mình nghĩ, học phải vui thì mới có hiệu quả. Hi vọng những kiến thức, ý tưởng mình chia sẻ sẽ giúp được bạn trong học tập.